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Abstract-A numerical study is made of natural convection and heat transfer in a rectangular porous 
cavity filled with an ice-water saturated porous medium. The two vertical sides of the cavity are cooled 
and heated at temperatures below and above the fusion point. The remaining sides of the cavity are 
assumed perfectly insulated. Special attention is focused on the influence of the heating temperature on 
the steady solutions. The Landau-transformation is used to immobilize the ice-water interface and the 
Darcy-Boussinesq equations are solved by the finite-difference technique. It is found that local maximum 
and minimum average Nusselt numbers occur at heating temperatures of 5 and 8”C, respectively. The melt 
region is wider at the bottom if the heating temperature is less than 8°C while the inverse is true for heating 
temperatures higher than 8°C. The 4°C isotherm is the boundary between the two counter-rotating flows 
at a heating temperature of 8°C only, otherwise the dominant flow crosses the 4°C isotherm and penetrates 

into the other layer as the heating temperature is higher than 4°C. 

INTRODUCTION 

RECENTLY, phase change heat transfer in enclosures, 
especially in a rectangular cavity, has attracted con- 
siderable interest due to its wide range of possible 
applications in the areas of thermal energy storage 
and high efficiency heat exchangers as well as in the 
food processing industry. 

Studies on melting and solidification in a vertically 
heated cavity are usually based on the linear 
Boussinesq approximation where the buoyancy force 
is assumed to vary linearly with the temperature [I, 
21. It has been found that the solid-liquid interface is 
curved with the top section wider than the lower one 
and a higher melting rate in the upper part of the 
cavity, due to the convection how with the fluid mov- 
ing up along the heated wall and descending along the 
solid-liquid interface. It has also been well established 
that the average Nusselt number increases with an 
increasing heating temperature, if other parameters of 
the system are kept constant [ 1, 21. 

However, the linear Boussinesq approximation 
commonly used in the above studies is not applicable 
for a number of fluids, such as water, molten bismuth, 
antimony, gallium and tellurium. For water, a 
maximum density occurs around 4°C at atmospheric 
pressure. It has been found [3, 41 that the average 
Nusselt number has a local maximum value and a 
local minimum value at heating temperatures of about 
4 and 8°C respectively, for a single water phase con- 
vection in a rectangular cavity, with a cooling tem- 
perature of 0°C. 

As subcooling is maintained at one boundary, we 
are in the presence of a two phase ice-water problem, 
which has received much less attention. Results simi- 

lar to that mentioned above may be expected while 
the existence of the ice-water interface, and the con- 
duction in the ice, present additional complexities and 
constraints which would lead to some distinct 

phenomena. 
The most recent literature dealing with the ice- 

water system was presented by Sasaki et al. [5]. They 
carried out a numerical study on the transient heat 
transfer process and found that the peculiar property 
of water at 4°C may result in a pair of counter- 
rotating vortices, and consequently the ice-water 

interface is curved with the top section thinner than 
the lower one and, therefore, the temperature field 
and heat transfer rates are qualitatively different from 
those of the Boussinesq fluid. They also found that the 
effect of density inversion could be neglected when the 
heating temperature is much higher than 4°C. 

The purpose of the present paper is to study the 
two-phase convection in a water-saturated cavity 
which is, respectively, heated and cooled with tem- 
peratures higher and lower than the fusion tem- 
perature at the two vertical walls. Special attention is 
focused on the influence of the heating temperature 
on the interface shape, the heat transfer rate and the 
convection pattern. The technique of solving this 
problem consists of using the Landau-transformation 
to immobilize the ice-water interface, and the finite- 
difference control volume method to discretize the 
momentum and energy equations. 

GOVERNING EQUATIONS 

The physical system considered consists of a two- 
dimensional rectangular cavity filled with an ice-water 
porous medium. The horizontal boundaries of the 



NOMENCLATURE 

cP heat capacity [J kg ’ ‘-‘C ‘1 Greek symbols 

Y gravitational acceleration [m SK’] i 
f& thermal diffusivity, k~/(pcf’ [m’s ‘1 

H height of the cavity [m] AT’ temperature scale in the liquid layer. 

ii conductivity [W m ’ ‘C ‘1 T;;; -- TT I’;C] 
K permeability [m’] AT’ temperature scale in the solid layer, 

L length of the cavity [m] TF- ry [ C] 

Nllh average temperature gradient at the i. constant in the water density expression, 
heated surface 9.297173 x IO-’ ‘Y?’ 

NZF multiple of the average temperature /’ viscosity [N s rn- “] 

gradient at the cooled surface and 1’ kinematic viscosity [m’ s _ ‘1 

K:,%; 7i,/T, P density [kg mm ‘] 
NU Nusselt number at steady state, Nub S P”? maximum density of water at 4-C, 

4 constant in the water density expression. 999.972 kg m 3 
1.894816 4 porosity 

n unit vector normal to the solid-liquid * dimensionless stream function, v*/E: 
interface Q either T, S or cp. 

P pressure [N m ‘1 
R k;/k; T,/T,, 
RU Rayleigh number, &I(AT’)~KH/(vx~) 

Superscripts 

s dimensionless interface position, S*jW 
I liquid 

T’ dimensionless temperature in the liquid. r 
porous matrix 

(T’*-7;*)/AT’ 
solid 

* 
T, maximum density temperature. 

dimensional variables. 

4.029325 c 
T‘ dimensionless temperature in the solid, Subscripts 

(7’;-- T’*)/AT’ c effective property of the saturated porous 

TZ superheating temperature [‘Cl medium 
T; cooling temperature [“Cl f quantity at fusion point 

T,* fusion temperature r’C] m maximum density point 

V velocity in the liquid region [m s ‘1 max maximum value 
I, $1 Cartesian coordinates min minimum value 
Xr. aspect ratio of the cavity, H/L. 0, 1 reference values. 

cavity are adiabatic. The vertical walls are maintained the energy equation in the liquid region 

at fixed temperatures T, and T,, respectively, below 
and above the fusion temperature T,. i.e. O”C, for the 
case of water considered here. 

The mathematical description of the fluid flow is 
based on the Darcy model, assuming that : 

( 1) All physical properties are constant except for 

the density in the buoyancy force. 
(2) The fluid is incompressible and its specific 

volume remains constant during the phase change 

process. 
(3) Viscous dissipation is negligible. 
(4) The flow is steady, laminar and two- 

dimensional. 

The governing equations consist of: 

the continuity equation 

v*v=o 

the momentum equation 

v = ;(-vP+pg) 

v*(vT’-a;VT’) = 0 (3) 

the energy equation in the solid region 

V’T’ = 0 (4) 

and the energy balance at the interface 

-kkVT’*n+k;VT”*n = 0. (5) 

To describe the variation of density with tempera- 
ture, the state equation of water proposed by Gebhart 
and Mollendorf [6] is used where, for water at atmo- 
spheric pressure 

/I = p,(l -?t]T-T”,j~). (6) 

By scaling length, velocity and temperatures to N. 
a:/H and AT’ = T, - Tf and AT’ = Tr- T,, the above 
equations can be expressed in the following dimen- 
sionless form : 

(7) 
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V. (VT’) = V*T’ (8) 

V2TS = 0 (9) 

0 = -V,T’+ RV, T” (at the interface) (10) 

where 

Ra = .igK(AT’)4H/va: 

B = (Tm - T,MT, - Tf) = 4/T, 

R = k:/k;TJT,, 

and the stream function 9 is defined by 

(11) 

(12) 

To complete the mathematical fo~ulation the 
above set of equations must satisfy the following 
boundary conditions : 

T=l on the heated wall 

3T 
-&===o on the ho~on~l walls 

rp=o on the interface and on the cavity walls 

T=O on the interface 

T = - I on the cooled wall. (13) 

It appears from the above mathematical for- 
mulation that the problem considered here is governed 
by four dimensionless parameters, namely the Ray- 
leigh number Ra, the inversion parameter /I, R, and 
the aspect ratio of the cavity XL. 

In the present system, /I is an indication of the 
location of the maximum density of water within the 
liquid region. In fact, in a pure convection state (i.e. 
if convection is neglected), /3 is just the relative posi- 
tion of the 4°C isotherm in the liquid layer. For exam- 
ple, /I = 0.5 means that the maximum density line is 
at the middle of the liquid Iayer, /I = 1 indicates that 
the maximum density line coincides with the vertical 
heated wall. The flow essentially depends on the value 
of this parameter. A more detailed discussion on the 
signification of this parameter can be found in the 
article of Nguyen et al. [7]. 

For a given porous matrix, fluid, cavity and sub- 
cooling temperature, the remaining parameters RG, p, 
and Rare interrelated to the superheating temperature 
T,,. The relation between two parameter groups 
(R~I,P,,R~) and (Re,Po,Ro) at 
peratures T,,, and T,,O, is 

Ra, = RG(T~JT~$ 

B1 =?K, 

heating tem- 

R = &TdT~,,Tc,iTco. (14) 

Hereafter, in order to concentrate on the influence 
of the superheating temperature on the melting 
process, the various values of Ru, j? and R will be 
expressed in terms of a reference set of values ; 
RaO = 200, /3,, = 1 and R,, = 3.667, with Th,, = 4°C. 

The conductivity ratio kS;/kk is chosen to be 3.667 
which corresponds to cooling and heating tem- 
peratures of - 4 and 4°C respectively. 

SOLUTION METHOD 

In the presence of convection, the heat transfer rate 
along the solid-liquid interface is nonuniform. As a 
consequence, the shape of the interface is not a vertical 
line as in the case of conduction-dominated phase 
change, but becomes inclined and distorted pro- 
portionally to the local convective heat transfer rate 
along the interface. In order to deal with this difficulty 
in solving the governing equations, a curvilinear coor- 
dinate system was used to transfo~ the irregular 
physical domain into a fixed rectangular one for the 
computational purpose [8]. 

A finite-difference method based on a control vol- 
ume formulation was used to obtain the numerical 
solutions. The discretized equations were derived by 
using a power-law inte~olation scheme. An iterative 
method was used to solve the discretized equations. At 
each iteration, the interface position S was determined 
from the energy balance at the interface. The stream 
function v and temperatures T’ and 7” were then 
simultaneously solved from the momentum and 
energy equations. The position of the interface S was 
then recalculated using the cp and values of T, this 
procedure being repeated until convergent solutions 
were obtained. Usually, about 2.50 iterations were 
needed to obtain the steady solution. Steady solutions 
were assumed to have been attained when the differ- 
ence between the two heat transfer rates on the heated 
and cooied sides differed by less than a predetermined 
tolerance, typically 3%. Details of the numerical 
scheme can be found in Zhang et aE. [Xl. 

RESULTS AND DISCUSSION 

Numerical results have been obtained for heating 
temperatures ranging from 2 to 12°C. Effects of sub- 
cooling and aspect ratio were considered by choosing 
values of T, = -2, -4°C and XL = 1, 2.5. Results 
were also obtained for two groups of reference values 
of RaO = 40, &, = 1 at T,,, = 4°C and Ra, = 80, 
/I, = 1 (corresponding to T,, , = 4”G) in order to inves- 
tigate separately the effect of Rayleigh number. 

Temperature andjowjelds 
The isotherms and streamlines for steady states of 

an ice-water system subjected to a fixed subcooling 
temperature T, = -2°C and a heating temperature 
T, varying from 2 to 12°C are illustrated in Figs. 1 (a)- 
(i), for reference values Ru,, R,, &,, T,,,, and XL,. 

Figure l(a) shows the flow pattern (left) and the 
isotherms (right) for T,, = 2°C (in all these and the 
following figures, the left vertical wall is cooled and 
the right vertical wall is heated). This situation is 
dominated by conduction in both the solid and liquid 
phases, as indicated by the almost vertical isotherms. 
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FOG. I. Streamlines and isotherms (isotherm spacing: 1°C). Ra, = 40, T,, = -2% T&J = 4% XL = 2.5. 
(a) T,, = 2”C, (b) Tb = 4”C, (c) Th = 5”G, (d) Th = PC, (e) Th = 7% (f) Th = 8% (9) Tr, = 9°C @t) 

Th = lO”C, (i) r, = 12°C. 

The convective flow induced by the horizontal tem- 
perature gradient is very weak and has a negligible 
effect on the temperature ~st~bution within the 
system. It is, however, worth noting that although the 
fluid adjacent to the ice-water interface is cooler, it is 
lighter than the fluid adjacent to the heated wall, due 
to the peculiar behavior of water in the (t4”C tem- 
perature range. As a consequence, one observes here 
a clockwise circulation with the fluid descending along 
the heated wall and rising along the interface, contrary 
to the case of a normal fluid whose density is a 
monotonous decreasing function of temperature. 

The case T,, = 4°C is shown in Fig. l(b) where 
the effect of convection becomes visible in the end 
regions: the melt is thinner and the isotherms are 
more closely spaced in the upper part than in the lower 
part of the cavity. This effect is due to the fact that 

heat is convected downward from the side wall to the 
lower part of the cavity, in opposition to the case of 
a normal t&rid which rises along the heated wall and 
impinges on the upper part of the interface to create 
a wider melt in that region. One could also note from 
this figure that the streamlines are more closely 
spaced, i.e. the fluid moves faster along the interface 
than along the heated wall. This result is characteristic 
of the nonlinear reIationship between density and tem- 
perature of water that makes the density gradient 
vanish across the 4°C isotherm and thereby con- 
siderably weakens the buoyancy flow. 

Figure 1 (c) shows the case of a heating temperature 
r, = 5°C. The results are quite similar to the previous 
case, except for the fact that the melt volume is slightly 
greater. This situation is, however, significant in that 
one observes only a clockwise circulation, although 



1886 x. ZHANG 

the 4~C isotherm is now located within the flow 
domain and one might expect the possible devel- 
opment of flow reversal. In fact, the occurrence of the 
latter is still retarded by the shear force of the main 
clockwise vortex which entrains the light fluid layer 
between the 4 and 5°C isotherms into its downward 
motion. 

The streamlines and isotherms corresponding to a 
heating temperature T,, = 6°C are presented in Fig. 
1 (d). Here one observes the appearance of a secondary 
counterclockwise vortex at the lower right corner of 
the cavity. For the reason just mentioned above. this 
reverse how does not occupy the whole 46 C layer. 
but just a small region where viscous shearing can no 
longer dominate the upward buoyancy. In fact, as the 
heating temperature is further increased. the reverse 
flow becomes stronger and stronger as can be seen 
from Figs. I(e) and (f) for 7, = 7 and 8-C. respcc- 
tively. At 7, = 8 C. one notes that the maximum den- 
sity (the 4 C isotherm) is located approximately in the 
middle of the melt region while the fluid along the 
heated wall has the same density as that along the 
interface. resulting in two counter-rotating vortices of 
approximately the same size and strength. It can be 
noted in passing that in a rectangular cavity with wide 
walls maintained respectively at 0 and 8’C. the flow 
consists of two mirror image vortices across the 4 C 
isotherm (located at the mid-plane of the cavity). In 
the present ice-water system, the shape of the interface 
is controlled by the local heat transfer rate so that the 
melt region is slightly wider in the lower part than in 

the upper part. hence destroying the symmetry 
between the two vortices. 

Moreover. from the isotherm pattern in Fig. 1 (f ) it 
can readily be seen that, except at the upper and lower 
ends of the cavity, the isotherms are almost vertical 
and equally spaced. Convective heat transfer is thus 
greatly reduced compared to the case of heating at 
a lower 7, = 4 C where, in the absence of density 
inversion, only a unicellular flow can develop. 

Results for heating temperatures Th = 9. 10 and 
12 C are presented in Figs. l(g))(i). As 7;, increased 
beyond 8 C, the counterclockwise vortex adjacent to 
the heated wall becomes stronger and stronger to com- 
pletely dominate the how domain when 7,, = 12 C. 
As a consequence, the melt at the top of the cavity 
becomes larger than at the bottom, as in the case of a 
normal fluid whose density decreases with increasing 

temperature. 

Heat transfer rate 
Closely related to the temperature and flow fields 

discussed above is the heat transfer rate which can be 
expressed in terms of the local Nusselt numbers as 
well as the overall Nusselt number. 

It should be noted that for steady states, the overall 
Nusselt numbers at both side walls must be equal. In 
fact, this is the condition imposed on the convergence 
of the numerical solutions. 

Referring to the isotherms in Fig. 1, it can be readily 
seen that for T,, < 7°C the local heat transfer rate 
along the heated wall increases upward. i.e. the Nus- 
selt number is maximum at the top and minimum at 
the bottom of the side wall. The inverse is true along 
the interface. This is due to the fact that for 7,, <: 7 C. 
the dominant flow is clockwise. with the hot Ruid 
moving down the side wall to impinge on the lower 
end of the interface. Along the cooled wall. the Nussclt 
number decreases upward. due to the fact that the 
solid phase is narrower in the lower part of the cavity. 

At 7,, = 8 C, the convection becomes weaker and 
the heat transfer rate is almost uniform along the side 
walls and the interface, as can be deduced from the 
almost parallol isotherms in Fig. I (f ). 

For T,, > 8 C. the above tendency is reversed. i.e. 
the Nussclt number increases downward along the 
heated side wall and upward along the interface. as a 
consequence of the counterclockwise flow. 

The effect of heating temperature on the Nusselt 
number is illustrated in Fig. 3(a) which shows .Yu 
vs 7, for reference values Ra,, = 40. .‘cZ,, = 2.5. and 
T,,) = -2 ‘C at r,, = 4 c. 

In a normal fluid, increasing the heating tem- 
perature amounts to proportionally increasing the Ray- 
leigh number, thereby increasing the heat transfer 
rate. In the present case however, Fig. 2(a) shows that 
NU first increases with 7,, to attain a maximum value 
at T,, 2, 5°C and decreased afterward to a minimum 
value at Th = 8’ C before increasing again with 7,,. 
This behavior is the result of the interplay between 
the two opposing effects : on the one hand, an increase 
of heating temperature corresponds to an increase 
of Rayieigh number and therefore to a higher heat 
transfer rate, but on the other hand it also induces an 
increasing flow reversal in the range 4 < T,, < 8 C. 

which has a damping effect on the convection heat 
transfer. 

The occurrence of a maximum Nusselt number at 
7, 2 5 C is due to the fact that when T,, is increased 
from 0 to 4 C. the Rayleigh number is increased 
accordingly while no inversion phenomenon is poss- 
ible. When 7, is increased from 4 to 5 C. the Rayleigh 
number continues to increase and, as described in 
the previous section, viscous entrainment is strong 
enough to suppress the onset of flow reversal. The 
flow at 7, = 5’C is therefore still unicellular and heat 
is directly transferred from the heated wall to the ice- 
water interface. The Nusselt number then reaches a 
maximum value at the end of the unicellular flow 
regime. This result. indeed, confirms the conjecture 
that an optimum heating in the presence of density 
inversion would be the one for which the fluid motion 
consists of a single cell [9]. 

For the geometry considered hem, the inversion 
effect appears to be maximum when Th = XC, thus 
reducing the Nusselt number to a minimum value at 
that temperature. 

It should be noted that while the occurrence of a 
maximum heat transfer rate at 7, =’ 5’ C has not been 
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FIG. 2(a). Nusselt numbers vs heating temperature. &zO - 40, T,, = -2”c, TAO = 4”c, XL = 2.5. 
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FIG. 2(b). Nusselt numbers vs heating temperature. Z’,, = -4”C, ThC = 4”C, XL = 2.5. (1) I&z* = 40; 

(2) Ra, = 80. 

FIG. Z(C). Nusselt numbers vs heating temperature. Rae = 40, The = 4”C, XL = 2.5. {I) T& = -4°C; 
(2) r,, = -2°C; (3) TCO = - 1°C. 



2888 X. ZHANG 

6 10 12 

Th 

FIG. 2(d). Nusselt numbers vs heating temperature. Ra, = 40, T,,, = -2 C, The = 4 C. (I) A’f. = 2.5; 
(2) XL = 1.0. 

reported in previous studies, many authors have 
observed numerically and experimentally a minimum 
heat transfer rate in various ice-water systems. 

Bendell and Gebhart [IO] have experimentally 
studied the problem of natural convection over a ver- 
tical ice slab and found that when the ambient tem- 
perature T = 5.6”C the flow is downward while it 
is upward for T = 5.5-C. In the experimental range 
2.2 < T < 25 ‘C, a minimum Nusselt number was 
obtained at T = 5.6”C. 

Rieger and Beer [ 111, in a numerical and exper- 
imental study on the melting of ice inside a horizontal 
cylinder, found a minimum Nusselt number at a wall 
heating temperature T x 8’ C. 

In a numerical simulation of the melting of ice 
around a heated horizontal cylinder, Ho and Chen 
[ 121 obtained a minimum heat transfer rate during the 
early stage of the melting process (i.e. for dimen- 
sionless time r < 0.2) when the wall heating tem- 

perature T = 8°C. and at later times (t > 0.2) when 
the heating temperature T = 9°C. 

The above results are obtained at the reference 
values RaO = 40, /Ir, = 1, ThO = 4”C, XL, = 2.5 and 
T,, = - 2’C. In order to see the dependence on other 

parameters of the system, Figs. 2(b) and (c) are pre- 
sented. Figure 2(b) shows two curves of Nu vs Th for 
two different groups of reference values, Ra,, = 40, 
f10 = 1, Tco== -4’C, The =4’C and Ra, = 80, 
p, = 1, T,, = -4-C. r,,, = 4C. At a given value of 
Thr /I is the same in the two cases, but the cor- 
responding Rayleigh number is twice as big. Doubling 
the Rayleigh number at various values of Th then 
results in a monotonous increase of the Nusselt num- 

ber as can be expected. 
The effect of subcooling on the heat transfer rate is 

illustrated in Fig. 2(c) which shows Nu vs T,, for three 
different values, T, = - 1, - 2 and - 4°C at Rae = 40, 
/Jo = 1, T,, = 4’C. It should-be noted in interpreting 
this figure that when the subcooling temperature is 

increased from -4 to - 1 C. with other parameters 
being fixed, the melt volume also increases, resulting in 
a larger flow domain and hence a stronger convection 
flow. The increase of Nusselt number with the cooling 
temperature, as shown in Fig. 2(c), is therefore similar 
to that observed in the previous figure with an increas- 
ing Rayleigh number. 

Figure 2(d) shows the curve of Nu vs Th for two 
aspect ratios XL = 1 and 2.5, at reference values 
Ra, = 40, /?” = 1, T,, = -2’C. T,,,, = 4,-C. It should 
be noted that as XL is increased, the width of the 
cavity is decreased. The melt volume is therefore 
reduced accordingly. A larger aspect ratio is thus quali- 
tatively similar to a lower subcooling. In fact, by com- 
paring Figs. 2(b)-(d), it appears that the Rayleigh 
number, subcooling temperature and aspect ratio 
have comparably strong effects on the heat transfer 
rate in the ranges of parameters considered in this 

study. 

Interjbce shape 
At steady state, the shape and position of the solid-- 

liquid interface provide information concerning the 
melt fraction as well as the heat transfer rate between 
the solid and liquid phases : a straight (vertical) inter- 
face indicates that the heat transfer rate is uniform 
along the interface, and along the side walls. This 
situation can occur if the system is governed by con- 
duction alone, i.e. if natural convection effects are 
negligible. Generally, the interface is curved due to 
the nonuniform heat transfer along the interface and 
side walls, due to the effects of natural convection in 
the liquid region. In fact, it has been well recognized 
that the melt region of a normal phase change material 
(PCM) is always thicker at the top of the cavity, and 
the interface advances towards the cooled wall as the 
heating temperature or the subcooling temperature is 
increased. This, however, is not true in the case of the 
ice-water system considered here, as can be seen from 
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FIG. 3. Interface shapes at different heating temperatures. Ra,, = 40, ThO = 4”C, XL = 2.5. (1) T, = -2°C; 
(2) T, = -4°C. 

Figs. 3(l) and (2) which show the interface positions 
corresponding to a heating temperature varying from 
2 to 12°C and a subcooling temperature of -2 and 
-4”C, respectively, at reference values Ra, = 40, 
r,,, = 4°C r,, = -2°C. From these figures, it 
appears that the melt volume increases, when the heat- 
ing temperature increases from 2 to 12°C. In the O- 
8°C heating range, the lower part of the melt is wider 
than the upper one, in opposition to the case of a 
normal PCM. As the heating temperature is increased 
beyond 8°C the melt thickness at the lower part of the 
cavity decreases while that at the upper part increases. 
The melt then becomes wider in the top of the cavity 
as in the case of a normal PCM. 

Values of heat transfer rates and interface positions 
corresponding to various heating temperatures are 
presented in Table 1 for the cases with T,, = -4°C 
T,,,, = 4°C and Ra, = 40. 

Table 1. Nusselt number and interface position for : 
Ra, = 40, ThO = 4°C T, = -4°C 

Th (“‘7 NU 

2 
4 
4.5 
5 
6 

8 
10 
12 

- 
1.002 
1.010 
1.025 
1.030 
1.029 
1.019 
1.009 
1.207 
1.720 

S avc 

0.1202 
0.2175 
0.2391 
0.2595 
0.2958 
0.3267 
0.3547 
0.4419 
0.5156 

s max 

0.1309 
0.2754 
0.3092 
0.3385 
0.3802 
0.3989 
0.3999 
0.6483 0.365 1 
0.8908 0.3403 

0.1112 
0.1772 
0.1906 
0.2037 
0.2313 
0.2651 
0.3187 

CONCLUSION 

A numerical study has been made of the steady 
state convection flow and heat transfer in an ice- 
water saturated porous medium. The results can be 
summarized as follows. 

(1) The Rayleigh number, subcooling temperature 
and aspect ratio have a strong and similar influence 
on the heat transfer rate as well as on the position and 
the shape of the solid-liquid interface. 

(2) The density inversion of water plays a deter- 
minant role in the flow pattern and the ice-water 
interface position such that : 

(i) For T,, < YC, the flow is unicellular with the 
fluid descending along the heated wall, creating a 
thicker melt layer in the lower part of the cavity. 

(ii) For T,, > 12°C the flow is unicellular with the 
fluid moving up along the heated wall, creating a 
thicker melt layer in the upper part of the cavity. 

(iii) For 5 < T,, < 12°C the flow consists of two 
counter-rotating vortices of unequal size, such that 
for 5 Q T,, < 8°C the melt is thicker in the lower 
part of the cavity, while the inverse is true for 
8 < Th < 12°C. 

(3) The heat transfer rate is strongly affected by 
the density inversion in such a way that the average 
Nusselt number first increases with the heating tem- 
perature until T,, = YC, but decreases afterwards to 
reach a minimum value at T,, = 8°C before increasing 
again with the heating temperature. 
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